Copper Polyhydrides

Timothy H. Lemmen, Kirsten Folting, John C. Huffman, and Kenneth G. Caulton*

Department of Chemistry and Molecular Structure Center Indiana University, Bloomington, Indiana 47405

Received June 21, 1985
We continue ${ }^{1}$ here our exploration of soluble phosphine complexes of $\mathrm{Cu}(\mathrm{I})$ hydrides directed toward improved understanding of the conversion of $\mathrm{CO} / \mathrm{H}_{2}$ mixtures to methanol catalyzed by oxides of copper and zinc. ${ }^{2}$ We established previously the unusual (positive δ value) ${ }^{1} \mathrm{H}$ chemical shift and fluxionality of the hydride ligands in $\left[\mathrm{HCuP}(p \text {-tolyl })_{3}\right]_{6},{ }^{1}$ but two X -ray diffraction studies ${ }^{3}$ have failed to establish the structural preference of the hydride ligands in such polyhydrides. We report here the resolution of this question, as well as the surprising variability of aggregate size in these clusters.

Hydrogenolysis of $\mathrm{Cu}-\mathrm{O}-\boldsymbol{t}$ - Bu bonds (eq 1 , in THF) is a quite

$$
1 / 4(\mathrm{CuO}-t-\mathrm{Bu})_{4}+\mathrm{L}+\mathrm{H}_{2} \rightarrow 1 / n(\mathrm{HCuL})_{n}+t-\mathrm{BuOH}(1)
$$

versatile synthetic method for copper phosphine polyhydrides. Thus, for $\mathrm{L}=\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}$ we isolate red crystals of $\mathrm{H}_{6} \mathrm{Cu}_{6}[\mathrm{P}$ $\left.\left(\mathrm{NMe}_{2}\right)_{3}\right]_{6}$. The analogous deuteride (from D_{2} in eq 1) shows an infrared spectrum identical ($400-4000 \mathrm{~cm}^{-1}$) with that of the hydride, precluding location of metal hydride vibrations. If NMR spectra are recorded at $-70^{\circ} \mathrm{C}$, a ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ singlet (112 ppm) and ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMe singlet (2.81 ppm) are detected. ${ }^{4}$ The ${ }^{2} \mathrm{H}$ NMR spectrum of $\mathrm{D}_{6} \mathrm{Cu}_{6}\left[\mathrm{P}\left(\mathrm{NMe}_{2}\right)_{3}\right]_{6}$ exhibits a $\mathrm{D}-\mathrm{Cu}$ resonance at $\delta 2.57\left(-70^{\circ} \mathrm{C}\right.$, full width at half-height $\left.=7 \mathrm{~Hz}\right)$ devoid of detectable D / P coupling. A single-crystal X-ray diffraction structure determination (Figure 1A) ${ }^{5}$ reveals a trigonal-antiprismatic array of six coppers, each with a terminal phosphorus ligand. ${ }^{6}$ The Cu_{6} unit lacks rigorous octahedral symmetry in that the $\mathrm{Cu} / \mathrm{Cu}$ distances are of two types: six longer ones ($2.804 \AA$) form two parallel equilateral triangles on opposite faces of the trigonal antiprism. The apices of these triangles are interconnected by six shorter $\mathrm{Cu} / \mathrm{Cu}$ distances ($2.508 \AA$). This trigonal-antiprismatic Cu_{6} form is also seen in $\left(\mathrm{HCuPAr}_{3}\right)_{6}, \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$ and p-tolyl. ${ }^{3}$ Unlike these earlier structure determinations, the hydride ligands have been located and refined by using X-ray data collected at $-162{ }^{\circ} \mathrm{C}$. These hydride ligands triply bridge the six sym-metry-equivalent lateral isosceles triangles which flank the S_{6} axis of the hexamer. This polyhedral form is also present in $\mathrm{Pd}_{6}{ }^{-}$ $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]_{6}^{4-}{ }^{4 \mathrm{a}} \mathrm{Fe}_{6} \mathrm{~S}_{6} \mathrm{Cl}_{6}{ }^{3-}$, ${ }^{7 \mathrm{~b}} \mathrm{NaO}-t$ - $\mathrm{Bu},{ }^{7 \mathrm{c}}$ and $\left(\mathrm{LiC}_{6} \mathrm{H}_{11}\right)_{6}{ }^{7 \mathrm{dd}}$ The hydride projects $0.8 \AA$ out of the triangle bounded by the two $2.508-\AA$ edges and one $2.804-\AA$ edge. These metal-metal distances differ by as much as $0.14 \AA$ from those in their PAr_{3} analogues. Since the identity of the ligand does not typically influence metal-metal bond lengths to this extent, ${ }^{8}$ we conclude that such malleable distances indicate at most weak $\mathrm{Cu}-\mathrm{Cu}$ interactions.

[^0]

Figure 1. (A) ORTEP drawing of the $(\mathrm{HCuP})_{6}$ portion of $[\mathrm{HCuP}-$ $\left.\left(\mathrm{NMe}_{2}\right)_{3}\right]_{6}$. The crystallographic S_{6} axis lies vertically in this view. Bond lengths (\AA): $\mathrm{Cu}-\mathrm{Cu}^{\prime} 2.804$ (3), $\mathrm{Cu}-\mathrm{Cu}^{\prime \prime} 2.508$ (2), $\mathrm{Cu}-\mathrm{H} 1.66$ (8), $\mathrm{Cu}^{\prime}-\mathrm{H}, 1.75$ (8), $\mathrm{Cu}^{\prime \prime}-\mathrm{H} 1.71$ (8), $\mathrm{Cu}-\mathrm{P} 2.234$ (3). (B) (Right) ORTEP drawing of $\mathrm{H}_{8} \mathrm{Cu}_{8}\left[\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right]_{4}$, viewed down the idealized S_{4} axis. Only ipso phenyl carbons are shown, and all hydrogens are omitted. (Left) Idealized view down the S_{4} axis of the Cu_{8} dodecahedron, showing the following reduction in symmetry to S_{4} : dark $\mathrm{Cu}-\mathrm{Cu}$ lines 2.453 (3) -2.517 (3) \AA, light $\mathrm{Cu}-\mathrm{Cu}$ lines, 2.676 (3) -2.738 (3) \AA. Dotted lines show proposed location of four of the eight hydride ligands. $\mathrm{P}-\mathrm{Cu}(\mathrm{A}$ site) $=2.227$ (4) $\AA ; \mathrm{P}-\mathrm{Cu}(\mathrm{B}$ site $)=2.263$ (4) \AA.

The influence of a chelating phosphine on eq 1 was probed using $\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}$ (dppp) at a dppp:Cu ratio of 0.5:1. Under 1000 psi of H_{2} in THF, a yellow (cf. red $\left[\mathrm{HCuP}\left(\mathrm{NMe}_{2}\right)_{3}\right]_{6}$) solid was isolated. This compound is remarkable in displaying two ${ }^{31} \mathrm{P}$ chemical shifts ($1: 1$ intensity), ${ }^{9}$ each of whose broadening indicates coordination to quadrupolar copper; the spectrum is unchanged between +20 and $-70^{\circ} \mathrm{C}$. The ${ }^{2} \mathrm{H}$ NMR of the analogous deuteride revealed a resonance at $\delta 1.86$ (8 Hz wide), but the absence of resolvable D / P coupling precludes probing stoichiometry and structure. Since two phosphorus environments are inconsistent with a trigonal-antiprismatic arrangement, the structure in Figure 1 B was ascertained by using X-ray diffraction. ${ }^{10} \quad \mathrm{H}_{8} \mathrm{Cu}_{8}(\mathrm{dppp})_{4}$ is the first transition-metal homopolyatomic aggregate shown to adopt a dodecahedral form. The chelate ligand connects A to B copper sites within an $\mathrm{A}_{2} \mathrm{~B}_{2}$ trapezoid, ${ }^{11}$ consistent with the ${ }^{31} \mathrm{P}$ NMR spectrum provided the dodecahedron is stereochemically rigid. $\mathrm{H}_{8} \mathrm{Cu}_{8}(\mathrm{dppp})_{4}$ is thus noteworthy for lacking facile deformability displayed by other dodecahedra. ${ }^{12}$ Figure 1 B reveals that the $\mathrm{Cu} / \mathrm{Cu}$ distances effect a reduction in symmetry from rigorous dodecahedral ($D_{2 d}$) to S_{4}. The S_{4} form adopted has four each of three types of faces. While hydride ligands are not yet evident in the X-ray data, we suggest that four of these lie above the faces bounded by short/short/long $\mathrm{Cu} / \mathrm{Cu}$ distances, with the remainder on short/long/long faces as sketched in Figure 1B. The long/long/long faces are unoccupied, as is the case for $\left(\mathrm{HCuPR}_{3}\right)_{6}$.
The propensity for aggregation, by hydride bridging, of copper hydrides is also evident in numerous reports ${ }^{13-15}$ of phenyl/copper

[^1]chemistry, where (1 -electron donor) phenyl rings bridge between coppers. Finally, the results reported here call attention to the possibility that some of the numerous phosphino gold clusters, ${ }^{16-17}$ many of which are synthesized by using BH_{4}^{-}, contain undiscovered hydride ligands.

Acknowledgment. This work was supported by the National Science Foundation (Grant CHE-83-05281) and by award of a Lubrizol Fellowship to T.H.L. We thank Scott Horn for skilled technical assistance.

Supplementary Material Available: Atomic positional and thermal parameters for the two copper hydrides (4 pages). Ordering information is given on any current masthead page.
(15) Khan, S. I.; Edwards, P. G.; Yuan, H. S. H.; Bau, R. J. Am. Chem. Soc. 1985, 107, 1682.
(16) Steggerda, J. J.; Bour, J. J.; van der Velden, J. W. A. Recl. Trav. Chim. Pays-Bas 1982, 101, 164.
(17) Hall, K. P.; Mingos, D. M. P. Prog. Inorg. Chem. 1984, 32, 237.

Formation of Stable Tungsten Alkene Carbyne Complexes by Carbonyl Substitution Reactions

Andreas Mayr,* Alison M. Dorries, and
Gregory A. McDermott

Department of Chemistry, Princeton University Princeton, New Jersey 08544

Steven J. Geib and Arnold L. Rheingold*
Department of Chemistry, University of Delaware
Newark, Delaware 19716
Received July 2, 1985
Reactions of alkenes and alkynes with metal complexes containing unsaturated metal-carbon bonds have been the subject of continued interest because of their involvement in olefin ${ }^{1}$ and acetylene ${ }^{2}$ metathesis, as well as polymerization ${ }^{3}$ reactions. trans-Halotetracarbonyltungsten carbyne complexes have been shown to induce polymerization of both certain alkenes ${ }^{4}$ and alkynes. ${ }^{5}$ We have recently ${ }^{6}$ developed simple synthetic routes to substituted carbyne complexes $\mathrm{X}(\mathrm{CO})_{2}(\mathrm{~L})_{2} \mathrm{M} \equiv \mathrm{CR}(\mathrm{X}=$ halide; $\mathrm{L}=$ nitrogen donor ligand; $\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$) and have begun to investigate reactions of tungsten systems with unsaturated organic molecules. Here we wish to report ligand substitution reactions that provide easy access to a new class of tungsten carbyne complexes containing alkene ligands. ${ }^{7}$

Reaction of the bis(pyridine)-substituted carbyne complexes $\mathrm{Cl}(\mathrm{CO})_{2}(\mathrm{py})_{2} \mathrm{~W} \equiv \mathrm{CR}, \mathbf{1}$ and $\mathbf{2}\left(\mathbf{1}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} ; \mathbf{2}, \mathrm{R}=\mathrm{CH}_{3}\right)$, with excess (10 equiv) tetraethylammonium chloride in dichloromethane affords the anionic carbyne complexes $\mathrm{NEt}_{4}\left[\mathrm{Cl}_{2}(\mathrm{py})(\mathrm{CO})_{2} \mathrm{~W} \equiv\right.$

[^2]

Figure 1. Molecular structure of $\mathrm{Cl}(\mathrm{CO})($ maleic anhydride $)(\mathrm{py})_{2} \mathrm{~W} \equiv$ CPh (9). 50% thermal ellipsoids. W-C(6), 1.801 (6); W-N(1), 2.233 (5); W-N(2), 2.253 (4); W-Cl, 2.538 (1); W-C(1); 2.033 (6); W-C(2), 2.215 (6); W-C(3), 2.272 (6); C(2)-C(3), 1.408 (8) $\AA . \mathrm{Cl}-\mathrm{W}-\mathrm{C}(6)$, $171.2(2)^{\circ} ; \mathrm{N}(1)-\mathrm{W}-\mathrm{C}(1), 165.4(2)^{\circ} ;[\mathrm{M}=$ midpoint of $\mathrm{C}(2)-\mathrm{C}(3)]$ M-W-N(2), 170.8 (2) ${ }^{\circ}$; M-W-C(6), 96.4 (2) ${ }^{\circ}$; M-W-C(1), 91.4 (2) ${ }^{\circ}$; M-W-N(1), 102.1 (2) ${ }^{\circ}$; M-W-Cl, 83.2 (1) ${ }^{\circ}$.

CR], $\mathbf{3}$ and $\mathbf{4}\left(\mathbf{3}, \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5} ; 4, \mathrm{R}=\mathrm{CH}_{3}\right.$) (eq 1). ${ }^{8}$ These products are only stable in the presence of excess chloride. ${ }^{9}$

Complexes 3 and 4 react with maleic anhydride or fumaronitrile to give the stable anionic carbyne complexes $\mathrm{NEt}_{4}\left[\mathrm{Cl}_{2}(\mathrm{py})\right.$ (CO) (alkene) $\mathrm{W} \equiv \mathrm{CR}$], 5-8 (eq 2), which are isolated as non-

crystalline solids in $40-80 \%$ yield by extraction of the reaction residue with tetrahydrofuran (THF) and addition of ether to the reduced extracts. ${ }^{10,11}$ Only the isomers containing the two chloride
(8) 3: IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu_{\mathrm{co}} 1965$ (s), 1867 (s); ${ }^{13} \mathrm{C}$ NMR (ppm, CDCl_{3}) $267.2(\mathrm{CPh}), 224.2(\mathrm{CO}), 221.8(\mathrm{CO})$ 4: IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu_{\mathrm{CO}} 1961(\mathrm{~s})$, 1857 (s); ${ }^{13} \mathrm{C}$ NMR (ppm, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $277.6\left(\mathrm{CCH}_{3}\right), 222.8$ (CO), 219.9 (CO).
(9) Labile anionic dihalotricarbonyltungsten carbyne complexes have previously been observed. Fischer, H.; Seitz, F. J. Organomet. Chem. 1984, 268, 247-258.
(10) 5: IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu_{\mathrm{CO}} 2041(\mathrm{~m}), \nu_{\mathrm{C}=\mathrm{o}} 1796(\mathrm{~m}), 1728(\mathrm{~s}) ;{ }^{1} \mathrm{H}$ NMR (ppm, $\left.\mathrm{CDCl}_{3}\right) 4.13$ (d), 2.93 (d) $(J=5.0 \mathrm{~Hz})(\mathrm{CH}=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (ppm, CDCl ${ }^{\text {) }} 273.5$ (CPh), 206.8 (CO), $175.3,174.6(C=\mathrm{O}), 51.5$ (d, J_{CH} $=177 \mathrm{~Hz}), 50.2\left(\mathrm{~d}, J_{\mathrm{CH}}=175 \mathrm{~Hz}\right)(\mathrm{C}=\mathrm{C}) .6: \mathrm{IR}\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu_{\mathrm{CO}} 2037$ (s), $\nu_{\mathrm{C}}=1793$ (s), 1727 (s); ${ }^{1} \mathrm{H}$ NMR (ppm, CDCl_{3}) 3.99 (d), 2.79 (d) (J $=4.9 \mathrm{~Hz})(\mathrm{CH}=\mathrm{CH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{ppm}, \mathrm{CDCl}_{3}\right) 285.6(\mathrm{CMe}), 207.2(\mathrm{CO})$, $175.2,174.7(\mathrm{C}=\mathrm{O}), 49.8\left(\mathrm{~d}, J_{\mathrm{CH}}=177 \mathrm{~Hz}\right), 47.9\left(\mathrm{~d}, J_{\mathrm{CH}}=176 \mathrm{~Hz}\right)$ ($\mathrm{C}=\mathrm{C}$). 7: Two diastereomers; IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \nu_{\mathrm{CN}} 2210(\mathrm{~m}), \nu_{\mathrm{CO}} 2046$ (s); ${ }^{1} \mathrm{H}$ NMR (ppm, $\left.\mathrm{CDCl}_{3}\right) 3.07$ (d), 3.00 (d) $(J=8.8 \mathrm{~Hz}$), 3.06 (d), 2.08 (d) $(\mathrm{J}=9.0 \mathrm{~Hz})(\mathrm{CH}=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (ppm, $\left.\mathrm{CDCl}_{3}\right) 271.6,270.4(\mathrm{CPh})$, 208.8, $207.1(\mathrm{CO}), 30.9\left(\mathrm{~d}, J_{\mathrm{CH}}=164 \mathrm{~Hz}\right), 30.6\left(\mathrm{~d}, J_{\mathrm{CH}}=184 \mathrm{~Hz}\right), 28.8(\mathrm{~d}$, $\left.J_{\mathrm{CH}}=166 \mathrm{~Hz}\right), 27.9\left(\mathrm{~d}, J_{\mathrm{CH}}=185 \mathrm{~Hz}\right)$. 8: Two diastereomers; IR (cm^{-1}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) $\nu_{\mathrm{CN}} 2208(\mathrm{~m}), \nu_{\mathrm{CO}} 2037(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR (ppm, CDCl_{3}) 2.92 (d), 2.82 (d) $(J=8.3 \mathrm{~Hz}), 2.80$ (d), 1.97 (d) $(J=8.5 \mathrm{~Hz})(\mathrm{CH}=\mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (ppm, $\left.\mathrm{CDCl}_{3}\right) 285.1,281.2(\mathrm{CMe}), 210.0,207.7(\mathrm{CO}), 33.3,29.9,28.0,26.6$ $(\mathrm{C}=\mathrm{C})$.

[^0]: (1) Goeden, G. V.; Caulton, K. G. J. Am. Chem. Soc. 1981, 103, 7354.
 (2) Kung, H. L. Catal. Rev. 1980, 22, 235.
 (3) (a) Churchill, M. R.; Bezman, S. A., Osborn, J. A.; Wormald, J. Inorg. Chem. 1972, 11, 1818. (b) Ho, D. M.; Bau, R. Inorg. Chim. Acta 1984, 84, 213.
 (4) Both the ${ }^{31} \mathbf{P}$ and ${ }^{1} \mathrm{H}$ NMR spectra are time-dependent within 0.5 min of dissolving in toluene- d_{8}, revealing complex transformations currently under study, including liberation of free $\mathbf{P}\left(\mathrm{NMe}_{2}\right)_{3}$. Added $\mathbf{P}\left(\mathrm{NMe}_{2}\right)_{3}$ has been used to retard these reactions.
 (5) Crystals of $\left[\mathrm{HCuP}\left(\mathrm{NMe}_{2}\right)_{3}\right]_{6}$. THF grown from THF adopt space group $P \overline{3}$ with $\left(-162^{\circ} \mathrm{C}\right) a=13.401$ (9) $\AA, c=11.712$ (0) $\AA, Z=1 . R(F)$ $=0.0490$ and $R_{w}(F)=0.0423$ for 1066 reflections (3σ), refining all atoms, including hydrogens. The molecule possesses crystallographic 3 symmetry. Positional and thermal parameters are available as supplementary material.
 (6) There is no evidence of $\mathrm{N} \rightarrow \mathrm{Cu}$ or $\mathrm{N} \cdots \mathrm{HCu}$ interactions.
 (7) (a) Longoni, G.; Manassero, M.; Sansoni, M. J. Am. Chem. Soc. 1980, 102, 3242. (b) Kanatzidis, M. G.; Hagen, W. R.; Dunham, W. R.; Lester, R.; Coucouvanis, D. J. Am. Chem. Soc. 1985, 107, 953. (c) Greiser, T.; Weiss, E. Chem. Ber. 1977, 110, 3388. (d) Zerger, R.; Rhine, w.; Stucky, G. J. Am. Chem. Soc. 1974, 96, 6048.
 (8) Cotton, F. A.; Walton, R. A. "Multiple Bonds Between Metal Atoms"; Wiley: New York, 1982; p 156 ff.

[^1]: (9) ${ }^{31} \mathrm{P}$ chemical shifts: -9.5 and -14.6 ppm .
 (10) Crystals grown from toluene/pentane assume space group $P \overline{1}$ with $\left(-156^{\circ} \mathrm{C}\right) a=19.329(9) \AA, b=19.405(9) \AA, c=15.332(7) \AA, \alpha=104.62$ (2) ${ }^{\circ}, \beta=84.38(3)^{\circ}, \gamma=89.92(3)^{\circ}$, and $Z=2 . R(F)=0.098$ and $R_{\mathrm{w}}(F)$ $=0.092$ for 12306 reflections. Positional parameters are available as supplementary material.
 (11) Hoard, J. L.; Silverton, I. V. Inorg. Chem. 1963, 2, 235.
 (12) Kepert, D. L. Prog. Inorg. Chem. 1978, 24, 179.
 (13) Camus, A.; Marsich, N.; Nardin, G.; Randaccio, L. J. Organomet. Chem. 1979, 174, 121.
 (14) Hope, H.; Oram, D.; Power, P. P. J. Am. Chem. Soc. 1984, 106, 1149.

[^2]: (1) (a) Grubbs, R. H. In "Comprehensive Organometallic Chemistry", Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; Vol. 8, pp 499-551.
 (2) (a) Churchill, M. R.; Ziller, J. W.; Freudenberger, J. H.; Schrock, R. R. Organometallics 1984, 3, 1554-1562. (b) Freudenberger, J. H.; Schrock, R. R.; Churchill, M. R.; Rheingold, A. L.; Ziller, J. W. Organometallics 1984, 3, 1563-1573.
 (3) (a) Turner, H. W.; Schrock, R. R. J. Am. Chem. Soc. 1982, 104, 2331-2333. (b) Ivin K. J.; Rooney, J. J.; Stewart, C. D.; Green, M. L. H.; Mahtab, R. J. Chem. Soc., Chem. Commun. 1978, 604-606.
 (4) Fischer, E. O.; Wagner, W. R. J. Organomet. Chem. 1976, 116, $\mathrm{C} 21-\mathrm{C} 22$.
 (5) Katz, T. J.; Ho, T. H.; Shih, N.-Y.; Ying, Y.-C.; Stuart, Van I. W. J. Am. Chem. Soc. 1984, 106, 2659-2668.
 (6) (a) Mayr, A.; Schaefer, K. C.; Huang, E. Y. J. Am. Chem. Soc. 1984, 106, 1517-1518. (b) Mayr, A.; McDermott, G. A.; Dorries, A. M. Organometallics 1985, 4, 608-610.
 (7) The only previous example of this type of complex is $\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ $\left(\mathrm{PMe}_{3}\right)_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{W}(\mathrm{CH})$; Holmes, S. J.; Schrock, R. R.; Churchill, M. R.; Wasserman, H. J. Organometallics 1984, 3, 476-484.

